QUARKUS/[COURSES]

COMPLETE
SYLLABUS

Master Production-Grade Microservices
Build Real-Time IoT Platforms

10 40+ 10+

MODULES VIDEOS SERVICES

START YOUR JOURNEY

I MODULE ©

QUARKUS ESSENTIALS

@ GOAL: Ground students in Quarkus before touching the project.

| ® VIDEOS

Create hello-world app, add REST endpoint + health check, run in dev
mode, watch live reload, inspect metrics.

V0.1 — What is Quarkus?

Quarkus design philosophy, JVM vs native, dev mode, Live Reload, Dev
Services.

V8.2 — CDI with Arc

Bean scopes, injection, producers/disposers, lifecycle management.

V0.3 — Config the Quarkus Way

SmallRye Config, @ConfigMapping, build-time vs runtime props, secrets.

V0.4 — RESTEasy Reactive Basics
REST resources, @GET/@POST, JSON-B vs Jackson, exception mappers.

V0.5 — Health & Metrics Quickstart

SmallRye Health, Micrometer, /q/health, /q/metrics endpoints.

s
$ LAB

L

quarkus.courses 02 |

mDULE 1 —l
PROJECT BOOTSTRAP

‘ @ GOAL: Stand up the monorepo and establish conventions.

| ® VIDEOS

V1.1 — Monorepo Layout

Structure services/, shared/, infrastructure/, tests/ directories.

V1.2 - Quarkus CLI & Extensions

Select extensions for small footprint and native readiness.

V1.3 — Profiles & Secrets

Configure dev/test/prod profiles and safe secret handling.

— 5
$ LAB

Skeleton repo with shared DT0s (positions/zones). Add OpenAPI plugin
and verify /q/openapi endpoint.

I quarkus.courses 03 |

I MODULE 2 |

SIMULATOR SERVICE

@ GOAL: Master REST Client Reactive, scheduling, config, fault
tolerance by building a simulator.

| ® VIDEOS

|
|
|
|
|
|
L

V2.1 - Creating the Simulator

Extensions: rest-client-reactive-jackson, scheduler, config-yaml.

V2.2 - Config Mapping
@ConfigMapping to bind YAML to typed configs, inject Clock.

V2.3 — Movement Patterns

Random walk, routes (circle/8/patrol), states, speed, noise.

V2.4 — Schedulers & Backoff

@Scheduled producers, retries with SmallRye Fault Tolerance, circuit
breaker.

V2.5 — REST Client Reactive

Post positions to Gateway, timeouts, connection pools, JWT headers.

V2.6 — Observability

Counters/timers, health checks, correlation IDs, structured logs.

quarkus.courses 04 |

I MODULE 2 (CONTINUED)

SIMULATOR SERVICE

—

| ® VIDEO

V2.7 —= Native Build Sanity

Reflection/resource config, build <50 MB images, startup <100ms.

— KEY SNIPPETS

quarkus create app io.suddo:ipt-simulator \
—extension="'rest-client-reactive-jackson, scheduler, config-yaml'

@ConfigMapping(prefix="simulator")
interface SimConfig {

List<Pet> pets();

FloorPlan floorPlan();
}

@Scheduled(every="200ms")
void tick() {
generator.next()
.onItem().transformToUni(this::send)
.subscribe().with(...);

i
$ LAB

Run in dev mode, post to stub endpoint, expose /q/metrics and verify
counters. Produce native image and confirm <100ms startup.

I quarkus.courses

|

mDULE 3 —l
HTTP INGEST

@ GOAL: Master RESTEasy Reactive, validation, idempotency, and
Kafka production.

| ® VIDEOS

V3.1 — API Gateway Routing

REST Clients for downstream services, timeout/pool tuning, CORS, filters.

V3.2 — Designing Ingest APIs

POST /api/vl/positions, Bean Validation 3.0, problem+json errors.

Idempotency keys, correlation IDs, log sanitization.

V3.4 — Native Performance

| V3.3 — Idempotency & Logging
| JSON reflection hints, TLS support, slim images.

— KEY SNIPPETS

quarkus create app io.suddo:ipt-gateway \
——extension="'rest, rest-jackson, rest-client-jackson'

quarkus create app io.suddo:ipt-ingest \
——extension="'resteasy-reactive-jackson,smallrye-reactive-messaging-kafka'

I quarkus.courses 06 |

r;;DULE 4
KAFKA MESSAGING

@ GOAL: Wire ingest to Kafka. Learn channels, serializers, error
handling, throughput tuning.

| ® VIDEOS

V4.1 — Channels & Config

@O0utgoing("raw-positions"), serializers, partitions/keys, config properties.

V4.2 = Producer Throughput

acks, linger.ms, compression, batching, p95/p99 measurement.

Nacks, retries/backoff, dead-letter topics, poison messages.

V4.4 — Tracing & Metrics

Trace context propagation, consumer lag in Grafana, Kafka client metrics.

| V4.3 — Errors & DLQ

$ LAB

Push 10k msg/s from simulator, verify topic keys/compression, break
Kafka to observe DLQ behavior.

I quarkus.courses

r;;DULE 9
STATEFUL PROCESSING

@ GOAL: Build stateful consumer with Caffeine caches, zone sync,
enrichment, alerts.

| ® VIDEOS

V5.1 — Project Setup

@Incoming raw-positions/zone-updates, @0utgoing enriched/alerts.

V5.2 — Caffeine Caching

Pet LRU + TTL, zone cache warm-up on startup, cache metrics dashboards.

Velocity/direction, point-in-polygon, dwell time, hysteresis for alerts.

V5.4 — Multi-Topic Output

Emit enriched + alerts, ordering and idempotence concerns.

| V5.3 — Enrichment Pipelines

$ LAB

Warm zone cache from Zone Service, trigger danger-zone breach, observe
alert emission to zone-alerts topic.

I quarkus.courses

o

MODULE 6 —l
MONGODB WRITER

@ GOAL: Reactive Mongo client, time-series collections, buffered
batch writes.

| ® VIDEOS

V6.1 — Reactive Client & P0JOs

Codecs/P0J0s, projections, time-series with timeField/metaField.

V6.2 — Batch Writes

Buffer with Multi.buffer(), insertMany, graceful shutdown flush.

V6.3 — Indexing & Retention

TTL indexes, {petId, timestamp}, write patterns for read optimization.

B *
$ LAB
Sustain 100k positions/sec into Mongo with batching. Track batch size
and write latency metrics.

I 5
PERFORMANCE TARGET

By Module 6: 100K events/sec ingestion, in-memory enrichment, MongoDB
persistence—all with sub-100ms p99 latency!

I quarkus.courses 09 |

mDULE 7 —l
REAL-TIME STREAMS

@ GOAL: Expose live event streams via SSE and WebSockets with
backpressure handling.

| ® VIDEOS

V7.1 — WebSockets in Quarkus

Endpoint lifecycle, session registry, ping/pong, filter by petId,
MessagePack.

V7.2 — SSE for Browsers

text/event-stream, reconnect, keep-alive, event types for positions/alerts.

V7.3 — Backpressure

Slow clients: drop vs buffer, quotas/limits, fan-out approaches.

i 5
? REAL-TIME MAGIC

Watch your web UI come alive with sub-second position updates. This is
where backend work pays off with stunning visualizations!

I quarkus.courses 10 |

I MODULE 8 |

OBSERVABILITY

@ GOAL: Complete visibility from simulator to database with

production dashhoards.

| ® VIDEOS

V8.1 — Metrics Everywhere

Micrometer counters/timers, percentiles/exemplars, consistent naming,
/q/metrics.

V8.2 — Distributed Tracing

OpenTelemetry integration, manual spans, baggage/trace context, Jaeger
visualization.

V8.3 — Structured Logging

JSON logs, correlation IDs, log levels per package, ELK integration.

5
$ LAB
Build Grafana dashboard: ingestion rate, processing latency

p50/p95/p99, cache hit/miss, consumer lag, MongoDB throughput,
WebSocket connections, JVM metrics.

P
M PRODUCTION CONFIDENCE

Full observability = 10x faster debugging. This module alone is worth
the entire course price!

I quarkus.courses 11 |

r;;DULE 9
NATIVE & CI/CD

@ GOAL: Production-ready native images, minimal containers,
automated security scanning.

| ® VIDEOS

V9.1 — Mandrel 25 & Native Tips

Build-time init, reflection/resources config, native TLS, shrink to <50MB.

V9.2 — Docker Multi-Stage

Micro runtime images, distroless base, UPX pros/cons, security best
practices.

V9.3 — CI Pipeline

Cache native builds, test matrix, Trivy scanning, Kubernetes deployment.

i F
& LAB
Build native images for all services. Verify <100ms startup and memory
targets. Deploy complete system to Kubernetes.

N 5
e FINAL METRICS

Startup: <100ms « Memory: 30-80MB RSS + Image: <50MB < Throughput:
100K/sec + Latency: p99 <100ms

I quarkus.courses

READY TO
MASTER QUARKUS?

N 5
WHAT YOU'LL BUILD

10 microservices * Event-driven architecture + 100K events/sec -

Sub-100ms latency +* Native images <50MB + Real-time WebSockets -

Production observability

i 7
"™ CAREER IMPACT

Build a production-grade IoT platform processing millions of
events per day—the exact skills companies pay $150K+ for.

ENROLL TODAY

quarkus.courses/enroll

Questions?
Contact Instructor Leonid Herasimau
leonid@suddo.io

I ® 2025 suddo.io * A1l Rights Reserved

]

